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Abstract
Background: Analytical methods have been proposed to determine whether there are
evolutionarily stable strategies (ESS) for a trait of ecological significance, or whether there is
disruptive selection in a population approaching a candidate ESS. These criteria do not take into
account all consequences of small patch size in populations with limited dispersal.

Results: We derive local stability conditions which account for the consequences of small and
constant patch size. All results are derived from considering Rm, the overall production of
successful emigrants from a patch initially colonized by a single mutant immigrant. Further, the
results are interpreted in term of concepts of inclusive fitness theory. The condition for
convergence to an evolutionarily stable strategy is proportional to some previous expressions for
inclusive fitness. The condition for evolutionary stability stricto sensu takes into account effects of
selection on relatedness, which cannot be neglected. It is function of the relatedness between pairs
of genes in a neutral model and also of a three-genes relationship. Based on these results, I analyze
basic models of dispersal and of competition for resources. In the latter scenario there are cases
of global instability despite local stability. The results are developed for haploid island models with
constant patch size, but the techniques demonstrated here would apply to more general scenarios
with an island mode of dispersal.

Conclusions: The results allow to identity and to analyze the relative importance of the different
selective pressures involved. They bridge the gap between the modelling frameworks that have led
to the Rm concept and to inclusive fitness.

Background
Various criteria have been proposed to compute the stable
states of the evolutionary dynamics of traits of ecological
significance. Previous works ("adaptive dynamics", e.g.,
[1-6]) have highlighted the need to distinguish different
kinds of stability. A strategy is convergence stable if the
population evolves towards it by allelic substitutions. A
convergence stable strategy is evolutionarily stable (non-
invasible) if rare deviants are selected against. Otherwise,

there is disruptive selection, and "branching" of the distri-
bution of phenotypes in the population may occur [3,6].

When fitness can be evaluated exactly, the different kinds
of stability can be evaluated. However, in many cases
approximations are useful, either because exact results are
not available or because they are too complex to allow
better understanding of evolution. This occurs when pop-
ulations are structured in patches occupied by a small
number of individuals. In such a case, a widely used
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measure of fitness effects is inclusive fitness. Inclusive fit-
ness measures fitness effects as the effect of a deviant strat-
egy on the fitness of an individual which expresses this
strategy, plus the effect on the fitness of an individual
when the strategy is expressed by other individuals in the
patch, the latter effect being weighted by a measure of
genetic similarity of individuals within a patch [7].
Although the inclusive fitness approach often allows to
identify selective pressures, it is desirable to integrate it in
a more general framework where the different kinds of
dynamics are distinguished [8]. Can inclusive fitness be
used to compute convergence stability, evolutionary sta-
bility, or both? Some works made no distinction between
the concepts of convergence and of evolutionary stability
[9], while others have found that inclusive fitness is suita-
ble for evaluating convergence stability but not for evolu-
tionary stability [10,11]. There have been some attempts
to derive evolutionary stability conditions using inclusive
fitness concepts (see [10] and references therein) but fur-
ther insight into the above issues has been limited by a
dearth of well-established results which could be com-
pared to some alternative approach.

This paper will provide such results, using the Rm concept
introduced in ref. [12]. Rm is the overall production of suc-
cessful emigrants from a patch, descended from a single
mutant immigrant. Ref. [12] presents an exact numerical
method to compute Rm in complex metapopulation mod-
els (also used in ref. [13]), but analytical conditions for
convergence and evolutionary stability can also be
deduced from Rm. In this paper I show how this can be
done. In particular, a new result is the analytical condition
for local invasibility versus non-invasibility (i.e. evolu-
tionary stability) of a convergence stable strategy for the
island model of dispersal. Kin selection effects are taken
into account in this computation, as the kin interactions
that occur in the patch all the way from colonization to
local allele extinction. Thus, we should also be able to
recover known inclusive fitness expressions from Rm, but
how we can do that is not a priori obvious. We will see that
inclusive fitness can be derived as a measure of local con-
vergence stability from Rm. But the evolutionary stability
condition can also be understood in terms of the concepts
of inclusive fitness theory.

Rather than considering the complex metapopulation
model of ref. [12], I will consider discrete-time models
which assume a constant number N of haploid adults per
patch. This should help to see the logic of the method.
Within this setting, I will analyze some basic models
widely considered in previous works, dealing with the
evolution of dispersal and with disruptive selection under
competition for resources.

Results
We consider here models where N adults reproduce
within each of a large ("infinite") number of patches. A
large number of juveniles are produced by each adult. A
fraction of them disperse, in which case they disperse ran-
domly over all patches, following an "island" or "global"
mode of dispersal. The juveniles then compete for access
to reproduction so that exactly N of them survive this
competition in each patch. No other exact assumption
about reproduction, competition and dispersal is done at
this stage (this is done later in applications).

The number of successful emigrants Rm
We consider Rm, the overall production of successful emi-
grants from a patch, descended from a single mutant
immigrant in this patch. By successful I mean that the
individual settles as one of the N adults in a patch. As orig-
inally described [12], Rm counts individuals before the
dispersal cost is paid and competition occurs, so that it
counts the number of emigrant descendants, successful or
not, of each emigrant, successful or not. Both definitions
are effectively equivalent.

The mutant is considered rare enough at the metapopula-
tion level that no further mutant immigrant occurs in the
patch and no mutant will be encountered by emigrants.
Rm is a generalization of the net reproductive rate R0 (or
lifetime reproductive success) often considered in demog-
raphy (e.g., [14,15]). However, Rm does not count the
number of offspring one generation later, but the number
of successful emigrants from a patch, descended over sev-
eral generations from one successful immigrant in this
patch. Rm is an appropriate fitness measure because all
successful emigrants are equivalent in terms of their fit-
ness expectations. The number of successful emigrants is
counted until local extinction of the family descended
from the immigrant. Even without local patch extinction,
local extinction of the family occurs due to the recurrent
inflow of other immigrants.

Exact computation of Rm
For this computation, we follow the distribution of the
number of descendants of the immigrant mutant over suc-
cessive generations. N offspring are sampled independ-
ently from a large number of juveniles. Let πj be the
probability that a randomly chosen offspring comes from
one of the j mutants in the patch in the previous genera-
tion. πj is a function of the mutant and resident strategies
(for examples, see the Applications below). Then, the
probabilities akj that there are k mutant descendants from
j mutant parents in the patch are binomial terms:
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where  is the binomial coefficient, N!/[k!(N - k)!].

These transition probabilities define a Markov chain with
one absorbing state (local extinction of the mutant allele).
Now let A = (akj) for k = 1, ..., N, j = 1, ..., N (i.e., mutant
allele being present). For j > 0, the probability of having j
mutants in the patch in generation t is given by pj ≡ (Ati)j,
where i is a vector representing the initial distribution of
the mutant: a single mutant is represented as i ≡
(1,0,...,0)T, where T denotes transpose. In each generation,
the expected number of successful emigrant gametes of
each mutant adult in a patch with j mutants is written gj.
The number of successful emigrant mutant gametes pro-
duced by the patch in generation t is therefore hj ≡ jgj. Let
h ≡ (hj). The expected outflow of successful mutants from
the patch can be written

Therefore, summing over generations we obtain the fit-
ness measure Rm in the form

where B ≡ (I - A)-1. This is a simple discrete time version
of eq. 6 in ref. [12].

Rm is a function of the resident strategy z and of the
mutant strategy, whose deviation from z is denoted δ.
Local stability conditions are given in terms of the first-
and second-order derivatives of the fitness measure [4-6].
We use the prime notation for differentiation with respect
to δ throughout the paper. A strategy z* is a candidate ESS

(evolutionarily stable strategy) if  = 0 at z*. A candi-

date ESS z* is locally convergence stable if  > 0 at z <z*

and  < 0 at z >z*, so that selection brings a population

expressing strategy z ≠ z* closer to z*. Hence, a strategy is

locally convergence stable if d /dz < 0 at z*, where 

is evaluated at δ = 0 before the derivation with respect to z

is carried out. It is locally non-invasible if  < 0 at z*

(for the borderline case  = 0, see [16]). In the following

sections, we provide analytical expressions for  and

.

A technical device underlying results below is the expan-
sion of derivatives of hj and πj in terms of powers of j.
Results will rely upon the highest order term in these
expansions being j2 for the first-order derivatives with
respect to δ, and j3 for the second-order derivatives. This

holds because, whether interactions between individuals
are additive or not, hj and πj can be expanded in terms of
δ times the sum (or average) of individual phenotypes in
the patch, plus δ2 times the sum of products of pairs of
individual phenotypes, plus δ2 times the sum of products
of three phenotypes, and so on. Dominance of allelic
effects in diploid populations raises an exception to this
pattern (see Discussion).

 and relatedness

Let wj(δ) be the expected number of adult offspring (emi-
grant or not) of a mutant parent among j mutant parents.
The expected number of offspring jwj of the j mutants in
the next generation is simply the sum of the expected
number of successful emigrants (hj) and of locally settled
offspring (Nπj). That is,

hj(δ) + Nπj(δ) = jwj (δ).  (4)

In the Appendix, it is shown that  can be written as

where d is the probability that an adult is an immigrant in

a population following the resident strategy,  and

 are the coefficients of j and j2/N in the expansion

for , and F is the probability that two individuals sam-

pled with replacement in a patch have a common ancestor
in the patch.

Simple and well-known arguments are available to com-

pute F [17,18], so it is useful to express  in terms of F.

Between two successive generations t and t + 1, F obeys the
recursion

F (t + 1) = 1/N + (1 - 1/N)(1 - d)2 F(t)  (6)

where 1/N is the probability that the same individual is
sampled twice, (1 - d)2 is the probability that two different
individuals are both non-immigrants, and then F(t) is the
probability that their parent(s) was or were from the same
family, i.e. descend from the same immigrant. Thus the
stationary value of F is

The definition of F as the probability that two individuals
descend from the same immigrant is also a definition of
the genetic structure parameters used in population genet-
ics (e.g., [17]), which are often used as relatedness coeffi-
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cients in kin selection theory (e.g., [19,20]). Hence F is a
relatedness coefficient. Indeed we can write

 = WIF/d  (8)

where WIF is the inclusive fitness considered in other
works (see the dispersal example for a concrete illustra-
tion). The 1/d factor means that Rm measures effects of
selection over an average of 1/d generations, in contrast to
WIF which measures them over one generation.

 is a function of the resident strategy z. As noted above,

 serves to find candidate ESSs z* such that  = 0 at

z*. Local convergence stability is determined by the sign

of  around z*, which may be deduced from the sign of

d /dz at z*. As the Applications below show, it may not

be necessary to compute d /dz to obtain the sign of 

and thus to check convergence stability.

We now consider invasion by mutants near a candidate

ESS z*. To express  we generalize the κ notation intro-

duced above. Let  (f),  (f) and  (f) be the coefficients
of j, j2/N and j3/N2 in the expansion for some quantity f.
We obtain

where K is the probability that three individuals sampled
with replacement in the same patch descend from the
same immigrant. K can be computed by the same meth-
ods as F, as detailed in the Appendix. All elements here are
evaluated at δ = 0. A proof is presented in the Appendix,
and evaluation of this formula in the Applications was
checked against numerical evaluation of Rm by eq. 3. The
second line of eq. 9 includes fitness effects depending on
changes in relatedness due to selection (see Discussion).
In general, πj is of the order of 1/N, F is of the order of 1/
N and K of the order of 1/N2, so the whole second line of
eq. 9 is of the order of 1/N and cannot be easily neglected

relative to the remainder of .

Applications
Here we apply the above results first to a simple model of
evolution of dispersal [21]. Although disruptive selection
has been found in other dispersal models (e.g., [22-24]),
it is not expected to occur in this model, which serves
mainly to compare the present approach with a previous

computation of stable strategies. Next we consider two
models of resource competition, one of which was previ-
ously considered in ref. [25]. These are small patch, lim-
ited dispersal versions of a class of models of competition
widely considered in previous works: see e.g. [16,25-29],
and references therein.

Dispersal
The trait under selection is the dispersal probability of
juveniles, and there is a survival cost c of dispersal: the sur-
vival probability of dispersed juveniles is (1 - c) times that
of philopatric ones. For mutants with dispersal z + δ, the
probability that an individual is the philopatric descend-
ant of a mutant parent is

This expression is obtained as the ratio of the relative
number of mutant juveniles that do not disperse [which is
1 - (z + δ) for each of j mutant parents] to the relative
number of juveniles which come in competition in the
patch. The latter is the number of philopatric juveniles, 1
- (z + δ) for each of the j mutant parents and 1 - z for each
of the N - j non-mutants, plus the relative number of
immigrant juveniles from other patch, which is Nz(1 - c)
as parents in other patches are not mutants and their juve-
niles pay the cost of dispersal.

Likewise, the number of successful emigrant offspring of
each deviant parent is

because each deviant parent contributes a relative number
(1 - c)(z + δ) of emigrant juveniles which compete with a
relative number N [1 - z + (1 - c)z] = N(1 - zc) of competing
juveniles in every other patch, and N adult offspring are
sampled out of these juveniles (hence N disappears).

From these expressions and from eq. 4, one obtains

and

so that  = 0 only for z* = (F - c)/(F - c2), a formula

known since ref. [21]. Together with eq. 7 and the rela-
tionship d = (1 - c)z/(1 - cz) between the immigration
probability d and the emigration probability z, this yields
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Explicitly evaluating d /dz at the candidate ESS would

be cumbersome, but it is easily verified that  is positive

(resp. negative) as z approaches 0 (resp. 1). Since  does

not vanish between 0 and z*,  must increase (resp.

decrease) from 0 when z decreases (resp. increases) from
z*. Hence, z* is locally convergence stable. Further, at z*,

From this formula,  < 0, i.e. the candidate ESS is

indeed an ESS, since cK <F2 at the candidate ESS. The latter
result is not obvious, but can be verified as follows. Using
eq. 40 to eliminate the three-genes relationship K, the sign

of  is seen to depend on the sign of the factors F - c

(which is positive) and c3 (N2 - 1) + cF - N2F3. The latter is
always negative for 0 <c < 1 and N ≥ 1, because the third
order polynomial in x, c3 (N2 - 1) + cx - N2x3, has only one
real root r, which is such that r < (1 - c + 2cN)/(2N) <F.

The equivalence with the "direct fitness" method previ-
ously used to obtain eq. 14 and related results (e.g.,
[20,30]) can be verified as follows. According to this
method, one considers the fitness function

which describes the expected number of offspring of an
individual with dispersal probability z•, in a patch of indi-
viduals with mean dispersal z0 in a population with resi-
dent dispersal z [20,30,31]. Since jwj = jw (z + δ, z + jδ/N),

 and  are equal to the two partial deriva-

tives of w, yielding

The term in brackets is the inclusive fitness [20]. One
would also obtain (with π1(0) = wp (z*, z*)/N)

where w(i,j) is the derivative of w, i times with respect to z•,
and j times with respect to z0. Such expressions are con-

venient when fitness is exactly a function of z0 (i.e. when
the phenotypes of all neighbors do not need to be distin-
guished), but they may not be useful otherwise.

Competition for resource
Here we consider a model where an individual is in
stronger competition with other individuals which have
phenotypes similar to its own phenotype. Many previous
models are phenomenological, effectively assuming that
each individual exploits only one type of resource accord-
ing to its phenotype, yet that it interferes more with indi-
viduals with similar phenotypes. For a population
subdivided in small patches, such a model was formu-
lated in ref. [25] and fully analyzed in the case N = 2.
However, its formulation is relatively complex, so we will
analyze here a slightly different model, and the final sec-
tion of the Appendix gives comparable results for the
model of ref. [25]. Both models have similar qualitative
outcomes, which converge for large patch size.

Here we assume that each individual effectively exploits a
range of resource and that interference on fitness of simi-
lar phenotypes results only from scramble competition
for acquisition of resource (e.g., [26]). We consider a
range of resource, such that resource of type y has abun-
dance ρ(y), which is the same in all patches. We assume
that resource follows a normal distribution,

for some constant σρ, and some ym such that resource ym is
the most abundant one. σρ describes the width of the dis-
tribution of resource over different types.

We assume that each individual cannot exploit all
resources with equal efficiency. An individual i with phe-
notype zi exploits resource y with an efficiency given by an
efficiency function α(y, zi), such that the individual gets a

fraction  of resource y, which is the
ratio of its own efficiency at exploiting resource y to the
sum of efficiencies at exploiting y among all individuals in
the population. We assume that the efficiency function is
normal-shaped,

for some σα, identical for all individuals. Thus, individual
i is best at exploiting resource zi, and σα quantifies the
diversity of resource that an individual may exploit. An
individual strategy is therefore characterized by zi and con-
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strained by the range of resources it can efficiently exploit
around zi.

Below we consider residents with strategy zi = z and
mutants with strategy zi = z + δ. Hence, in a patch with j
mutants and N - j non-mutants,

.

The share sj (δ) of total resource that individual i obtains
is its share of resource y, times abundance of resource y,
integrated over the distribution of y. Hence, in a patch
with j mutants and N - j non-mutants, it is

We assume that the expected number of juveniles of an
individual is proportional to this share sj of total resource.
The probability that an individual in the offspring gener-
ation is the descendant of anyone of j mutant parents in
its patch is then

πj(δ) = jsj (δ) (1 - d)  (22)

and the expected number of successful emigrant gametes
of j mutant parents is

hj (δ) = N djsj (δ).  (23)

The factor N appears here, as in the dispersal example,
because N adults settle in each patch. A general, useful
check of expressions for πj and hj is that jwj (0) = j = hj (0)
+ Nπj (0) (from eq. 4).

Here  = -  = (ym - z)/ . Hence

 is of the sign of ym - z, which means, as expected, that

the population will evolve to exploit the most abundant
resource, z* = ym. In other words, ym is locally convergence
stable. At z*, similar computations yield

For given d, F and K become negligible as N increases
(they are of the order of 1/N and 1/N2, respectively), and
in the limit we recover the result for panmictic popula-
tions, that disruptive selection occurs when σα > σρ, i.e.

when the resource is more broadly distributed than can be
efficiently exploited by one individual.

Population structure inhibits branching, a previously
noted result [25] for the interference competition model
(see Appendix): for N = 2,

is always negative and, unexpectedly, is independent of σρ
(because the term in brackets in eq. 25 is then independ-

ent of σρ and proportional to 1/ ). For any N, the exact

condition for disruptive selection is 1/  > 1/  + 2(F -

K)/(1 - F)/ . The latter condition is complex, because

but it implies that branching is inhibited by small patch
size and low dispersal. This result can be understood as
follows [25]. There is disruptive selection when a deviant
individual gains fitness from avoiding competition with
the resident strategy. However, in a subdivided popula-
tion, competition is preferentially with genetically related
individuals, i.e. with individuals more likely to be deviant
than the average individual in the population. Then, devi-
ant individuals do not avoid competition as much as if the
neighbors in the patch were not related.

Since K is of the order of 1/N2, it may seem reasonable to

approximate  by setting K = 0. This seems to work well

only for N large and d large (Figure 1), because K is not
negligible when d → 0 even for large N. Ignoring K will be
misleading in this case.

The strategy z* = 0 may be locally stable without being

globally stable:  < 0 does not exclude that mutants

with large effects could invade (for examples, see [32,33]).
Here this may happen for a narrow range of parameter
values in the structured population model, even though it
does not happen in a single large patch of infinite size. In
a single large patch at the candidate ESS, the fitness of a
single mutant is

so that large mutations invade if and only if small muta-
tions invade. In structured populations, global stability
was investigated by numerical evaluation of Rm, focusing
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on threshold combinations of /  and d such that

 = 0, that is on the set of parameter values represented

by the lines in Figure 1. By continuity, if for some mutants
Rm > 1 in the neighborhood of these threshold values,
there must be close values of σρ/σα and d such that Rm > 1

for some mutants while  < 0, which is the sought phe-

nomenon of global instability despite local stability. It
was found to happen for some parameters combinations
as shown in Figure 2. Note that Rm can be quite large in
some cases, e.g. Rm > 182 for N = 36, d = 1/100 (implying

the threshold value /   3.94), and δ = 0.729, so

the selective pressures at work could be efficient on a short
time scale.

To some extent, global instability could be sought from
higher-order derivatives of Rm. In the present case the
symmetry of selection on mutants with effect δ and -δ
implies that Rm is an even function of δ around the candi-
date ESS and that all its odd-order derivatives are null, so
at least the fourth-order derivatives should be considered.
In practice, this would be very complex.

Discussion
This paper has shown how local evolutionary stability
conditions can be computed in structured populations.

The expression for , which determines convergence

stability, is consistent with earlier results from inclusive

fitness theory. The expression for , which determines

evolutionary stability stricto sensu, is new. These are local
stability conditions: numerical evaluation of Rm is
required to check that mutants of large effect could not
invade even if mutants of small effect cannot. Here I will
comment on the different roles that relatedness plays in

Threshold combinations of values of / and d for disruptive selectionFigure 1
Threshold combinations of values of /  and d for dis-
ruptive selection. The lines are the thresholds for different 
values of N. Branching is favored for sets of values in the top 
right corner delimited by these lines. The dashed line shows 
the thresholds for N = 12 obtained with the approximation K 
= 0.

2 4 6 8 10
ΣΡ

2�ΣΑ
2

0

0.2

0.4

0.6

0.8

1

di
sp

er
sa

lr
at

e
d

N�3

N�4

N�12

N��

σρ
2 σα

2

σρ
2 σα

2

′′Rm

′′Rm

σρ
2 σα

2 ≅

Cases of global instabilityFigure 2
Cases of global instability. The shaded area is the set of 
parameter values for which some mutants invade despite 
local non-invasibility of the candidate ESS z*. This figure is 
obtained from computation of Rm for δ up to 2.187.

3 6 12 24 36

Patch size N

0.01

1

0.34

0.67

di
sp

er
sa

lr
at

e
d

′Rm

′′Rm
Page 7 of 12
(page number not for citation purposes)



BMC Evolutionary Biology 2003, 3 http://www.biomedcentral.com/1471-2148/3/22
measures of convergence and evolutionary stability, and
in this perspective I will discuss the interpretation of the

different terms which appear in the computation of 

and  as detailed in the Appendix.

Evaluation of  involves computation of hB'i, and this

leads to computation of j2Bi, where j2 = (1,22,...,N2). j2Bi
is the sum over generations of the expected square
number of descendants of an immigrant in its patch, and
therefore in a neutral model it is proportional to related-
ness (see eq. 37). Thus we recover expressions for inclu-
sive fitness in terms of relatedness in a neutral model.
Here, relatedness describes the probability that two genes
have a common ancestor within the patch they are sam-
pled in; this is the property of relatedness that is relevant
in relating inclusive fitness to the fitness of rare alleles.

In contrast, evaluation of second-order fitness effect gen-
erally requires evaluation of the effect of selection on
relatedness. This has been previously acknowledged [10]
but not taken into account because it was not found how
to compute these effects. This problem has been solved
here. Since the term j2Bi is proportional to relatedness,
j2B'i is proportional to the derivative of relatedness, and

this term is included in . The present analysis further

shows that it can be expressed as function of the probabil-
ity that three genes have a common ancestor within the
patch, in a neutral model (see eqs. 51–53).

The different terms of  can be interpreted by distin-

guishing effects on the distribution of mutant family size
in generation t (the parents of the next generation) and
effects on the number of offspring of these parents. The

first line of the expression for ,

represents second-order effects on the number of off-
spring of these parents, cumulated over all generations.
They include effects on the probability that next-genera-

tion individuals will be of philopatric origin ( ) and on

the production of successful emigrants ( ), which are

gathered in the single term . These terms differ from

previous expressions for second-order effects: we find a

three-gene relationship K [in the terms ( ) K above

and w(0,2)K in eq. 18] in place of relatedness in the corre-
sponding term of condition (15b) in [10]. Here K does
not appear as measuring an effect of selection on related-
ness, but because fitness (wj) of a mutant focal individual

is affected in a nonadditive way by pairs of mutant neigh-
bors (where individuals are considered "with replace-
ment", so that the focal individual and its two neighbors
may all be the same individual).

The remainder of ,

is entirely new. It is of order 1/N, so that it cannot be easily
neglected relative to other kin competition effects. It com-
pounds first-order effects on the distribution of family
size in generation t with first-order effects on the number
of offspring of these individuals, hj and πj. The distribu-
tion of family size is given by Ati (eq. 2). Therefore, the
effects of selection on this distribution are given by deriv-
atives of At, and the cumulative effects of selection over
generations are given by derivatives of (I - A)-1 ≡ B. Thus,
all expected effects of selection on the genetic structure of
the parents in each generation are accounted by B' in the
2(h' + jA')B'i term of eq. 56. The latter term determines
the whole expression (30) above. It involves effects not
only on relatedness but also on the mean size of the fam-
ily descended from an immigrant.

Our results have relied upon the highest order term in the

expansion of  being j2, and j3 for . In diploid pop-

ulations with dominance at the locus under selection, the

highest order term for  would be j3. The evaluation of

 would involve the three-gene relationship, and 

would also depend on higher powers of j.

Previous consideration of Rm has been based on the prin-
ciple that we should compute fitness for a rare mutant
[12], where rare means here that fitness effects can be
computed by considering a single immigrant mutant in a
population of residents. But the concept of convergence

stability also requires that when  ≠ 0, selection has the

same direction whatever the mutant frequency, so that
allele invasion implies allele replacement. In the infinite
island model, the direction and magnitude of first-order
effects on fitness are the same whatever the mutant allele
frequency. This is a distinct result owing to a distinct con-
cept of relatedness, the so-called regression definition of
relatedness [34,35]. This relatedness concept serves to
describe the probability that two individuals within a
patch share the same allele when the allele is not rare in
the population, and implies that selection is not fre-
quency-dependent. Thus two distinct concepts of related-
ness are called for in the computation of fitness effects on
rare mutants and of convergence stability. However, in the
infinite island model, the same measure F quantifies both
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concepts of relatedness, and  is appropriate for com-

puting convergence stability. This holds because whether
the mutant allele is rare or not, the first-order fitness
effects depend on the probability that two gene lineages
sampled in a patch have a common ancestor in this patch,
i.e. that they descend from the same immigrant [36]. By
contrast, evolutionary stability depends on frequency-
dependent selection, so no use of the regression definition
is called for in the evaluation of the condition for evolu-
tionary stability stricto sensu.

Conclusions
The present paper makes clear the relationship between
inclusive fitness concepts and the alternative approach
based on the number of successful emigrants. The appli-
cations are straightforward. In the dispersal model,
branching has never been suggested to occur, and it is
shown here that selection is never disruptive at the candi-
date ESS. This example serves to illustrate the relationship
with some techniques from inclusive fitness theory. In the
model of competition for resources, population structure
inhibits branching. Our results allow a deeper analysis of
this example, and we find that there are a few cases of glo-
bal instability despite local stability.

Appendix

computation of  and 

Eigenvectors and eigenvalues of A and B at δ = 0
Computation of the eigenvalues and eigenvectors of A
allows evaluation of various expressions involving A and
B. However, the expressions for most eigenvectors are
complex, and our analyses actually avoid as much of this
algebra as possible, except for the few results stated in this
section.

Let jm ≡ (1,2m...,Nm) be the element-wise product of j with
itself m times. Let 1 be the vector (1,...,1) of length N. Let
j(m) ≡ j(j - 1) ... [j - (m - 1)1], also in terms of the element-
wise vector product [i.e., its jth element is j(j - 1)...(j - m +
1)]. Then

where N(m) ≡ N(N - 1)...(N - m + 1). This result follows
from well-known results for factorial moments of the
binomial distribution. The jth element of jkA is the kth
moment of the binomial distribution with parameters N
and πj, hence the jth element of j(m)A is the mth factorial
moment of the binomial distribution with parameters N

and πj, i.e. it is . For δ = 0, this element is also

; from which eq. 31 follows.

Then, one way to obtain the eigenvalues and eigenvectors

of A is to note that , where the 's

are the Stirling numbers of the second kind [37]. Thus

, which relates jkA for any k to

lower element-wise powers of j. For k = 1, this yields triv-
ially the first eigenvalue and eigenvector. Together with k
= 2, this yields the second eigenvalue and eigenvector, and
so on. The eigenvalues of A are

and eigenvectors associated to λ1 and λ2 are e1 = j and e2 =
j + [(N - 1)π - 1]j2. It appears that more eigenvectors are
not needed.

Conversely

Evaluation of jB, j2B, j2Bi and j3Bi
Note first that 1 - Nπ1(0) = d. This is a necessary conse-
quence of the fact that the parent of any individual is
either from the patch (with probability Nπ1 when δ = 0),
or immigrant (with probability d, by definition, when δ =
0). Then, given B ≡ (I - A)-1,

jB = j(1 - λ1)-1 = j(1 - Nπ1)-1 = j/d  (34)

at δ = 0. Thus, the fitness of a neutral mutant is hBi = djBi
= 1, as it should be.

From eq. 33,

where F is given by eq. 7. Then, j2Bi = NF/d. This result can
be obtained by a more enlightening approach.

 can be viewed as the expectation of the

sum over generations of the squared size j2 of the family
descended from an initial mutant. In any generation,
expected squared family size is N2 times the probability
that two individuals sampled with replacement belong to
the same family, i.e. that they descend from the same
immigrant. The latter probability is F, as noted in the
main text. Then, the sum over a long time T of expected
squared family sizes is N2TF. It is also the number of
immigrants TNd times the expectation of family size
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summed over generations since the family's ancestor
immigrated into the patch, j2Bi. Hence

j2Bi = N2TF/(NTd) = NF/d.  (37)

This argument is easily generalized to other functions of
number of mutants. In particular

j3Bi = N2K/d  (38)

where K is the probability that three individuals sampled
with replacement in a patch descend from the same immi-
grant. K can be computed as follows: the three individuals
sampled with replacement are either three times the same
individual (with probability 1/N2), or two of them are the
same and differ from a third [with probability (1 - 1/N)3/
N], or they are all distinct. In the latter cases we consider
their origin in the previous generation t. These different
cases give a recursion over successive generations t and t +
1:

Then, the stationary value of K is

Evaluation of 

Consider

 = h'Bi + hB'i.  (41)

All elements are evaluated at δ = 0. The jth element of h'
can be expanded in terms of j and j2 and of model param-

eters. Let  (f) and  (f) for the coefficient of j and j2/N in

the expression for some quantity f, and expand  in this

way. Then

In δ = 0, h = dj, so that, using B' = BA'B (see [38], p. 151)
and eq. 34,

hB' = djBA'B = jA'B.  (43)

The lth element of jA' is the derivative of the expectation

of the binomial distribution (1), hence it is . Then

and, using eq. 43,

Recall that hj is the expected number of emigrant adults
offspring of j mutant adults, and that Nπj is the number of
adult offspring in the patch of j mutant adults. Hence hj +
Nπj is simply the expected number of adult offspring of j
mutant adults, denoted as jwj (eq. 4). Then from eqs. 42
and 45,

With eqs. 34 and 37, this implies eq. 5.

Evaluation of j2A', j2A'Bi and j2B'i
These computations are preliminary to the computation

of . The jth element of j2A' is the derivative of the sec-

ond moment of the binomial distribution (1). Hence, it is

Using πj = jπ1 at δ = 0, this implies

Then, using eqs. 37 and 38,

Next

j2B'i = j2BA'Bi = NF [(1/d - 1)j + j2] A'Bi  (51)

(from eq. 36)

(from eq. 50)

from eq. 43.

Evaluation of 

We write

(see [38], p. 152)

=h''Bi + 2(h' + jA')B'i + hBA''Bi  (56)
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(using eq. 34). Expanding h' and jA' in terms of κ coeffi-
cients, and using eqs. 44 and 4, one obtains that the mid-
dle term of expression (56) is

(using eq. 53)

using  at the candidate ESS (eq. 5).

The first term of eq. 56 is

and, arguing as in eq. 44, the third term of eq. 56 is

From eq. 4, the  and N  terms in the last two expres-

sions can be collected into  terms, and then summing

expressions 59, 60 and 61 yields eq. 9.

Interference competition
Here, following ref. [25], I assume that the relative
number of juveniles produced by each mutant in a patch
with j mutants may be written

where the functions ρ and α are defined as in the scramble
competition model of the main text (eqs. 19 and 20). This
corresponds to eq. 5 in ref. [25], with some change of
notation and β there being set to 0. Likewise, the relative
number of juveniles produced by each non-mutant in a
patch with j mutants is

These numbers are relative to the juvenile production by
individuals in other patches, so that the relative total
fecundity of a patch [which is jφj (δ) + (N - j) φj (0)]
depends on the number of mutants in the patch. By con-
trast, patch fecundity was constant in the scramble com-
petition model because the total amount of resource was
constant in each patch. In the jargon of population genet-
ics, the scramble competition model is a soft selection
model while the interference competition model is a hard

selection model (e.g., [39]). Assuming that juveniles

emigrate with probability  and that there is a relative
survival cost c for emigrants (as in the dispersal model),

and

These expressions are consistent with eqs. 8–10 in ref.
[25], in the case of non-overlapping generations. Note
that results will be expressed more simply in terms of the
probability of immigration

than in terms of the probability of emigration .

From the above expressions, one obtains as expected that
the population converges to z* = ym. In the computation

of , it turns out that fitness effects depending on

changes in relatedness due to selection are null, because
all κ coefficients in the second line of eq. 9 are null (con-
sistent with ref. [25] for N = 2). One obtains

The numerical analysis of this result is similar to that of
the scramble competition model, with again some cases
of global instability despite local stability being found
(details not shown). The main difference is that threshold

values of /  such that  = 0 are lower than in the

scrambling competition model. That is, disruptive selec-
tion occurs more easily. This is seen most easily for strong
dispersal, d = 1. In this case F = 1/N and K = 1/N2, so that

disruptive selection occurs when (1 - 2/N) >  in the

scrambling competition model, while it occurs when

(1 - 1/N) >  in the interference competition model

(the latter result being consistent with eq. 18 in [25]). This
difference arises because the interference competition
model gives a higher benefit to deviant individuals when
σρ > σα: in a single large patch at the candidate ESS, the fit-
ness of a rare mutant is

wj (δ) = exp [(1/  - 1/ ) δ2/2  (68)
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which is higher than the comparable result for the scram-
ble competition model (eq. 28).
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